A Homotopy-theoretic Universal Property of Leinster’s Operad for Weak Ω-categories

نویسنده

  • RICHARD GARNER
چکیده

We explain how any cofibrantly generated weak factorisation system on a category may be equipped with a universally and canonically determined choice of cofibrant replacement. We then apply this to the theory of weak ω-categories, showing that the universal and canonical cofibrant replacement of the operad for strict ω-categories is precisely Leinster’s operad for weak ω-categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monad interleaving: a construction of the operad for Leinster’s weak ω-categories

We show how to “interleave” the monad for operads and the monad for contractions on the category Coll of collections, to construct the monad for the operads-with-contraction of Leinster. We first decompose the adjunction for operads and the adjunction for contractions into a chain of adjunctions each of which acts on only one dimension of the underlying globular sets at a time. We then exhibit ...

متن کامل

Homotopy Theory of Modules over Operads and Non-ς Operads in Monoidal Model Categories

There are many interesting situations in which algebraic structure can be described by operads [1, 12, 13, 14, 17, 20, 27, 32, 33, 34, 35]. Let (C,⊗, k) be a symmetric monoidal closed category (Section 2) with all small limits and colimits. It is possible to define two types of operads (Definition 6.1) in this setting, as well as algebras and modules over these operads. One type, called Σ-opera...

متن کامل

Steps toward the weak higher category of weak higher categories in the globular setting

We start this article by rebuilding higher operads of weak higher transformations, and correct those in cite{Cambat}. As in cite{Cambat} we propose an operadic approach for weak higher $n$-transformations, for each $ninmathbb{N}$, where such weak higher $n$-transformations are seen as algebras for specific contractible higher operads. The last chapter of this article asserts that, up to precise...

متن کامل

$omega$-Operads of coendomorphisms and fractal $omega$-operads for higher structures

     In this article we introduce the notion of textit{Fractal $omega$-operad} emerging from  a natural $omega$-operad associated to any coglobular object in the category of higher operads in Batanin's sense, which in fact is a coendomorphism $omega$-operads. We have in mind coglobular object of higher operads which algebras are kind of higher transformations. It follows that this natural $omeg...

متن کامل

Wild ω-Categories for the Homotopy Hypothesis in Type Theory

In classical homotopy theory, the homotopy hypothesis asserts that the fundamental ω-groupoid construction induces an equivalence between topological spaces and weak ω-groupoids. In the light of Voevodsky’s univalent foundations program, which puts forward an interpretation of types as topological spaces, we consider the question of transposing the homotopy hypothesis to type theory. Indeed suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008